Big O Magnitude Notation: Difference between revisions
From Rest of What I Know
No edit summary |
Added page description via AutoDescriptor bot |
||
| (4 intermediate revisions by one other user not shown) | |||
| Line 3: | Line 3: | ||
== Formal Definition for Functions == | == Formal Definition for Functions == | ||
A function <math>f(n) = O(10^k)</math> if <math>\exists n_0 \in \mathbb{R+}</math> such that <math>\forall n \geq n_0 : 10^k \leq f(n) < 10^{k+1}</math> | A function <math>f:\mathbb{R} \to \mathbb{R}</math> is considered to be <math> | ||
f(n)=O(10^k)</math> for some fixed <math>k \in \mathbb{Z+}</math> if <math>\exists n_0 \in \mathbb{R+}</math> such that <math>\forall n \geq n_0 : 10^k \leq f(n) < 10^{k+1}</math> | |||
== Formal Definition for Random Variables == | == Formal Definition for Random Variables == | ||
A random variable <math>X = O(10^k)</math> if <math>P[10^k \leq X < 10^{k+1}] = 1</math>. | A random variable <math>X = O(10^k)</math> if <math>P[10^k \leq X < 10^{k+1}] = 1</math>. | ||
{{#seo:|description=Explains the formal definition of Big O Magnitude Notation, a notation used to express orders of magnitude for functions and random variables.}} | |||
[[Category:Concepts]] | [[Category:Concepts]] | ||
Latest revision as of 07:45, 30 August 2025
Like Big O Unit Notation, Big O Magnitude Notation refers to a notation used to express orders of magnitude.
Formal Definition for Functions[edit]
A function is considered to be for some fixed if such that
Formal Definition for Random Variables[edit]
A random variable if .
