Big O Magnitude Notation: Difference between revisions

From Rest of What I Know
No edit summary
No edit summary
Line 3: Line 3:
== Formal Definition for Functions ==
== Formal Definition for Functions ==


A function <math>f(n) = O(10^k)</math> if <math>\exists n_0 \in \mathbb{R+}, k \in \mathbb{Z+}</math> such that <math>\forall n \geq n_0 : 10^k \leq f(n) < 10^{k+1}</math>
A function <math>f(n) = O(10^k)</math> for some fixed <math>k \in \mathbb{Z+}</math> if <math>\exists n_0 \in \mathbb{R+}</math> such that <math>\forall n \geq n_0 : 10^k \leq f(n) < 10^{k+1}</math>


== Formal Definition for Random Variables ==
== Formal Definition for Random Variables ==

Revision as of 00:23, 29 August 2024

Like Big O Unit Notation, Big O Magnitude Notation refers to a notation used to express orders of magnitude.

Formal Definition for Functions

A function for some fixed if such that

Formal Definition for Random Variables

A random variable if .