Big O Magnitude Notation: Difference between revisions
From Rest of What I Know
No edit summary |
set domain and codomain |
||
| Line 3: | Line 3: | ||
== Formal Definition for Functions == | == Formal Definition for Functions == | ||
A function <math>f(n)=O(10^k)</math> for some fixed <math>k \in \mathbb{Z+}</math> if <math>\exists n_0 \in \mathbb{R+}</math> such that <math>\forall n \geq n_0 : 10^k \leq f(n) < 10^{k+1}</math> | A function <math>f:\mathbb{R} \to \mathbb{R}</math> is considered to be <math> | ||
f(n)=O(10^k)</math> for some fixed <math>k \in \mathbb{Z+}</math> if <math>\exists n_0 \in \mathbb{R+}</math> such that <math>\forall n \geq n_0 : 10^k \leq f(n) < 10^{k+1}</math> | |||
== Formal Definition for Random Variables == | == Formal Definition for Random Variables == | ||
Revision as of 08:38, 26 August 2025
Like Big O Unit Notation, Big O Magnitude Notation refers to a notation used to express orders of magnitude.
Formal Definition for Functions
A function is considered to be for some fixed if such that
Formal Definition for Random Variables
A random variable if .
